Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Phys Rehabil Med ; 63(5): 422-430, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31756523

RESUMO

Cerebral palsy (CP) is a complex syndrome of various sensory, motor and cognitive deficits. Its prevalence has recently decreased in some developed countries and its symptoms have also shifted since the 1960s. From the 1990s, CP has been associated with prematurity, but recent epidemiologic studies show reduced or absent brain damage, which recapitulates developmental coordination disorder (DCD). In previous studies, we developed a rat model based on mild intrauterine hypoperfusion (MIUH) that recapitulated the diversity of symptoms observed in preterm survivors. Briefly, MIUH led to early inflammatory processes, diffuse brain damage, minor locomotor deficits, musculoskeletal pathologies, neuroanatomical and functional disorganization of the primary somatosensory (S1) cortex but not in the motor cortex (M1), delayed sensorimotor reflexes, spontaneous hyperactivity, deficits in sensory information processing, and memory and learning impairments in adult rats. Adult MIUH rats also exhibited changes in muscle contractile properties and phenotype, enduring hyperreflexia and spasticity, as well as hyperexcitability in the sensorimotor cortex. We recently developed a rat model of DCD based on postnatal sensorimotor restriction (SMR) without brain damage. Briefly, SMR led to digitigrade locomotion (i.e., "toe walking") related to ankle-knee overextension, degraded musculoskeletal tissues (e.g., gastrocnemius atrophy), and lumbar hyperreflexia. The postnatal SMR then led to secondary degradation of the hind-limb maps in S1 and M1 cortices, altered cortical response properties and cortical hyperexcitability, but no brain damage. Thus, our 2 rat models appear to recapitulate the diversity of symptoms ranging from CP to DCD and contribute to understanding the emergence and mechanisms underlying the corresponding neurodevelopmental disorders. These preclinical models seem promising for testing strategies of rehabilitation based on both physical and cognitive training to promote adaptive brain plasticity and to improve physical body conditions.


Assuntos
Paralisia Cerebral , Transtornos das Habilidades Motoras , Córtex Sensório-Motor , Animais , Paralisia Cerebral/etiologia , Marcha , Humanos , Locomoção , Ratos
2.
Sci Rep ; 8(1): 16328, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397222

RESUMO

Motor control and body representations in the central nervous system are built, i.e., patterned, during development by sensorimotor experience and somatosensory feedback/reafference. Yet, early emergence of locomotor disorders remains a matter of debate, especially in the absence of brain damage. For instance, children with developmental coordination disorders (DCD) display deficits in planning, executing and controlling movements, concomitant with deficits in executive functions. Thus, are early sensorimotor atypicalities at the origin of long-lasting abnormal development of brain anatomy and functions? We hypothesize that degraded locomotor outcomes in adulthood originate as a consequence of early atypical sensorimotor experiences that induce developmental disorganization of sensorimotor circuitry. We showed recently that postnatal sensorimotor restriction (SMR), through hind limb immobilization from birth to one month, led to enduring digitigrade locomotion with ankle-knee overextension, degraded musculoskeletal tissues (e.g., gastrocnemius atrophy), and clear signs of spinal hyperreflexia in adult rats, suggestive of spasticity; each individual disorder likely interplaying in self-perpetuating cycles. In the present study, we investigated the impact of postnatal SMR on the anatomical and functional organization of hind limb representations in the sensorimotor cortex and processes representative of maladaptive neuroplasticity. We found that 28 days of daily SMR degraded the topographical organization of somatosensory hind limb maps, reduced both somatosensory and motor map areas devoted to the hind limb representation and altered neuronal response properties in the sensorimotor cortex several weeks after the cessation of SMR. We found no neuroanatomical histopathology in hind limb sensorimotor cortex, yet increased glutamatergic neurotransmission that matched clear signs of spasticity and hyperexcitability in the adult lumbar spinal network. Thus, even in the absence of a brain insult, movement disorders and brain dysfunction can emerge as a consequence of reduced and atypical patterns of motor outputs and somatosensory feedback that induce maladaptive neuroplasticity. Our results may contribute to understanding the inception and mechanisms underlying neurodevelopmental disorders, such as DCD.


Assuntos
Adaptação Fisiológica/fisiologia , Elevação dos Membros Posteriores/efeitos adversos , Transtornos dos Movimentos/fisiopatologia , Plasticidade Neuronal , Córtex Sensório-Motor/fisiopatologia , Animais , Feminino , Elevação dos Membros Posteriores/fisiologia , Masculino , Transtornos dos Movimentos/patologia , Neurônios/patologia , Análise de Componente Principal , Ratos
3.
Front Neurol ; 9: 423, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29973904

RESUMO

Intrauterine ischemia-hypoxia is detrimental to the developing brain and leads to white matter injury (WMI), encephalopathy of prematurity (EP), and often to cerebral palsy (CP), but the related pathophysiological mechanisms remain unclear. In prior studies, we used mild intrauterine hypoperfusion (MIUH) in rats to successfully reproduce the diversity of clinical signs of EP, and some CP symptoms. Briefly, MIUH led to inflammatory processes, diffuse gray and WMI, minor locomotor deficits, musculoskeletal pathologies, neuroanatomical and functional disorganization of the primary somatosensory and motor cortices, delayed sensorimotor reflexes, spontaneous hyperactivity, deficits in sensory information processing, memory and learning impairments. In the present study, we investigated the early and long-lasting mechanisms of pathophysiology that may be responsible for the various symptoms induced by MIUH. We found early hyperreflexia, spasticity and reduced expression of KCC2 (a chloride cotransporter that regulates chloride homeostasis and cell excitability). Adult MIUH rats exhibited changes in muscle contractile properties and phenotype, enduring hyperreflexia and spasticity, as well as hyperexcitability in the sensorimotor cortex. Taken together, these results show that reduced expression of KCC2, lumbar hyperreflexia, spasticity, altered properties of the soleus muscle, as well as cortical hyperexcitability may likely interplay into a self-perpetuating cycle, leading to the emergence, and persistence of neurodevelopmental disorders (NDD) in EP and CP, such as sensorimotor impairments, and probably hyperactivity, attention, and learning disorders.

4.
Brain Pathol ; 28(6): 889-901, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29437246

RESUMO

Motor control and body representation in the central nervous system (CNS) as well as musculoskeletal architecture and physiology are shaped during development by sensorimotor experience and feedback, but the emergence of locomotor disorders during maturation and their persistence over time remain a matter of debate in the absence of brain damage. By using transient immobilization of the hind limbs, we investigated the enduring impact of postnatal sensorimotor restriction (SMR) on gait and posture on treadmill, age-related changes in locomotion, musculoskeletal histopathology and Hoffmann reflex in adult rats without brain damage. SMR degrades most gait parameters and induces overextended knees and ankles, leading to digitigrade locomotion that resembles equinus. Based on variations in gait parameters, SMR appears to alter age-dependent plasticity of treadmill locomotion. SMR also leads to small but significantly decreased tibial bone length, chondromalacia, degenerative changes in the knee joint, gastrocnemius myofiber atrophy and muscle hyperreflexia, suggestive of spasticity. We showed that reduced and atypical patterns of motor outputs, and somatosensory inputs and feedback to the immature CNS, even in the absence of perinatal brain damage, play a pivotal role in the emergence of movement disorders and musculoskeletal pathologies, and in their persistence over time. Understanding how atypical sensorimotor development likely contributes to these degradations may guide effective rehabilitation treatments in children with either acquired (ie, with brain damage) or developmental (ie, without brain injury) motor disabilities.


Assuntos
Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Locomoção , Músculo Esquelético/fisiopatologia , Fatores Etários , Animais , Peso Corporal , Paralisia Cerebral , Teste de Esforço , Feminino , Marcha , Elevação dos Membros Posteriores , Masculino , Ratos , Ratos Sprague-Dawley , Reflexo Anormal
5.
Dev Med Child Neurol ; 58 Suppl 4: 7-11, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27027601

RESUMO

Cerebral palsy (CP) describes a group of neurodevelopmental disorders of posture and movement that are frequently associated with sensory, behavioral, and cognitive impairments. The clinical picture of CP has changed with improved neonatal care over the past few decades, resulting in higher survival rates of infants born very preterm. Children born preterm seem particularly vulnerable to perinatal hypoxia-ischemia insults at birth. Animal models of CP are crucial for elucidating underlying mechanisms and for development of strategies of neuroprotection and remediation. Most animal models of CP are based on hypoxia-ischemia around the time of birth. In this review, we focus on alterations of brain organization and functions, especially sensorimotor changes, induced by prenatal ischemia in rodents and rabbits, and relate these alterations to neurodevelopmental disorders found in preterm children. We also discuss recent literature that addresses the relationship between neural and myelin plasticity, as well as possible contributions of white matter injury to the emergence of brain dysfunctions induced by prenatal ischemia.


Assuntos
Paralisia Cerebral , Hipóxia-Isquemia Encefálica , Doenças do Prematuro , Lesões Pré-Natais , Substância Branca , Animais , Paralisia Cerebral/patologia , Paralisia Cerebral/fisiopatologia , Feminino , Humanos , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Doenças do Prematuro/patologia , Doenças do Prematuro/fisiopatologia , Gravidez , Lesões Pré-Natais/patologia , Lesões Pré-Natais/fisiopatologia , Substância Branca/patologia , Substância Branca/fisiopatologia
6.
Behav Brain Res ; 232(1): 233-44, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22521835

RESUMO

Early brain damage, such as white matter damage (WMD), resulting from perinatal hypoxia-ischemia in preterm and low birth weight infants represents a high risk factor for mortality and chronic disabilities, including sensory, motor, behavioral and cognitive disorders. In previous studies, we developed a model of WMD based on prenatal ischemia (PI), induced by unilateral ligation of uterine artery at E17 in pregnant rats. We have shown that PI reproduced some of the main deficits observed in preterm infants, such as white and gray matter damage, myelination deficits, locomotor, sensorimotor, and short-term memory impairments, as well as related musculoskeletal and neuroanatomical histopathologies [1-3]. Here, we determined the deleterious impact of PI on several behavioral and cognitive abilities in adult rats, as well as on the neuroanatomical substratum in various related brain areas. Adult PI rats exhibited spontaneous exploratory and motor hyperactivity, deficits in information encoding, and deficits in short- and long-term object memory tasks, but no impairments in spatial learning or working memory in watermaze tasks. These results were in accordance with white matter injury and damage in the medial and lateral entorhinal cortices, as detected by axonal degeneration, astrogliosis and neuronal density. Although there was astrogliosis and axonal degeneration in the fornix, hippocampus and cingulate cortex, neuronal density in the hippocampus and cingulate cortex was not affected by PI. Levels of spontaneous hyperactivity, deficits in object memory tasks, neuronal density in the medial and lateral entorhinal cortices, and astrogliosis in the fornix correlated with birth weight in PI rats. Thus, this rodent model of WMD based on PI appears to recapitulate the main neurobehavioral and neuroanatomical human deficits often observed in preterm children with a perinatal history of ischemia.


Assuntos
Comportamento Animal/fisiologia , Isquemia Encefálica/patologia , Isquemia Encefálica/psicologia , Encéfalo/patologia , Cognição/fisiologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Animais , Dano Encefálico Crônico/patologia , Sinais (Psicologia) , Feminino , Fluoresceínas , Gliose/patologia , Imuno-Histoquímica , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Memória de Longo Prazo/fisiologia , Atividade Motora/fisiologia , Compostos Orgânicos , Gravidez , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/fisiologia , Reversão de Aprendizagem/fisiologia , Percepção Espacial/fisiologia
7.
Brain Pathol ; 22(1): 1-16, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21615591

RESUMO

Perinatal brain injury including white matter damage (WMD) is highly related to sensory, motor or cognitive impairments in humans born prematurely. Our aim was to examine the neuroanatomical, functional and behavioral changes in adult rats that experienced prenatal ischemia (PI), thereby inducing WMD. PI was induced by unilateral uterine artery ligation at E17 in pregnant rats. We assessed performances in gait, cognitive abilities and topographical organization of maps, and neuronal and glial density in primary motor and somatosensory cortices, the hippocampus and prefrontal cortex, as well as axonal degeneration and astrogliosis in white matter tracts. We found WMD in corpus callosum and brainstem, and associated with the hippocampus and somatosensory cortex, but not the motor cortex after PI. PI rats exhibited mild locomotor impairments associated with minor signs of spasticity. Motor map organization and neuronal density were normal in PI rats, contrasting with major somatosensory map disorganization, reduced neuronal density, and a marked reduction of inhibitory interneurons. PI rats exhibited spontaneous hyperactivity in open-field test and short-term memory deficits associated with abnormal neuronal density in related brain areas. Thus, this model reproduces in adult PI rats the main deficits observed in infants with a perinatal history of hypoxia-ischemia and WMD.


Assuntos
Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Neurônios/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Animais , Sintomas Comportamentais/patologia , Sintomas Comportamentais/fisiopatologia , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Feminino , Masculino , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/fisiologia , Neurônios/fisiologia , Gravidez , Ratos , Ratos Sprague-Dawley
8.
Int J Dev Neurosci ; 29(6): 593-607, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21382470

RESUMO

Early brain injury including white matter damage (WMD) appears strongly correlated to perinatal hypoxia-ischemia and adverse neurological outcomes in preterm survivors. Indeed, WMD has been widely associated with subtle to major motor disturbances, sensory, behavioral and cognitive impairments in preterm infants who afterward develop cerebral palsy (CP). Prenatal ischemia (PI) has been shown to reproduce the main features of WMD observed in preterm infants. The present study was aimed at determining in adult rats the impact of PI on brain axons, musculoskeletal histology and locomotor activity. PI was induced by unilateral intrauterine artery ligation at E17 in pregnant rats. We found axonal degeneration and reactive astrogliosis in several white matter regions of adult PI rats. We found mild myopathic and secondary joint changes, including increased variability in myofiber size in several hind limb muscles, decreased myofibers numbers but increased Pax 7 cells and myofiber size in the gastrocnemius, and mild knee and ankle chondromalacia. Although treadmill locomotion appeared normal, several kinematic parameters, such as stride length, amplitude, velocity and leg joint angles were altered in adult PI rats compared to shams. Using intra- and inter-group variability of kinematic parameters, PI seemed to impair the maturation of locomotion on the treadmill. In addition, PI rats exhibited spontaneous hyperactivity in open-field test. Musculoskeletal changes appeared concomitant with mild impairments in gait and posture. Our rodent model of WMD based on PI reproduces the mild motor deficits and musculoskeletal changes observed in many preterm infants with a perinatal history of hypoxia-ischemia, and contributes towards a better understanding of the interplay between brain injury, musculoskeletal histopathology and gait disturbances encountered subsequently.


Assuntos
Hipóxia-Isquemia Encefálica/complicações , Locomoção/fisiologia , Atividade Motora , Fibras Nervosas Mielinizadas/patologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Animais Recém-Nascidos , Paralisia Cerebral/etiologia , Paralisia Cerebral/patologia , Paralisia Cerebral/fisiopatologia , Modelos Animais de Doenças , Feminino , Marcha , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Músculo Esquelético/patologia , Postura , Gravidez , Ratos , Ratos Sprague-Dawley
9.
Exp Neurol ; 221(1): 186-97, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19896483

RESUMO

After incomplete spinal cord injury (SCI), the adult central nervous system is spontaneously capable of substantial reorganizations that can underlie functional recovery. Most studies have focused on intraspinal reorganizations after SCI and not on the correlative cortical remodeling. Yet, differential studies of neural correlates of the recovery of sensory and motor abilities may be conducted by segregating motor and somatosensory representations in distinct and topologically organized primary cortical areas. This study was aimed at evaluating the effects of a cervical (C4-C5) spinal cord hemisection on sensorimotor performances and electrophysiological maps in primary somatosensory (S1) and motor (M1) cortices in adult rats. After SCI, an enduring loss of the affected forepaw tactile sensitivity was paralleled by the abolishment of somatosensory evoked responses in the deprived forepaw area within the S1 cortex. In contrast, severe motor deficits in unilateral forelimb were partially restored over the first postoperative month, despite remnant deficits in distal movement. The overall M1 map size was drastically reduced in SCI rats relative to intact rats. In the remaining M1 map, the shoulder and elbow movements were over-represented, consistent with the behavioral recovery of proximal joint movements in almost all rats. By contrast, residual wrist representations were observed in M1 maps of half of the rats that did not systematically correlate with a behavioral recovery of these joint movements. This study highlights the differential potential of ascending and descending pathways to reorganize after SCI.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/patologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Tato/fisiologia , Animais , Vértebras Cervicais/patologia , Modelos Animais de Doenças , Eletroencefalografia/métodos , Potenciais Somatossensoriais Evocados/fisiologia , Lateralidade Funcional/fisiologia , Força da Mão/fisiologia , Masculino , Movimento/fisiologia , Estimulação Física/métodos , Desempenho Psicomotor/fisiologia , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...